Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
نویسندگان
چکیده
Printing techniques have been extensively used in the fabrication of organic electronic devices, such as light-emitting diodes and display backplanes. These techniques, in particular inkjet printing, are being employed for the localized dispensing of solutions containing biological molecules and cells, leading to the fabrication of bio-functional microarrays and biosensors. Here, we report the fabrication of an all-printed and flexible biosensor for antioxidants. Gold (Au) interdigitated electrodes (IDEs) with sub-100 µm features were directly inkjet-printed on plastic substrates using a nanoparticle-based ink. Conductivities as high as 5×10(6) S/m (12% of bulk Au) were attained after sintering was conducted at plastic-compatible 200 °C for 6 h. The enzyme Tyrosinase (Tyr) was used in the active layer of the biosensors, being innovatively deposited by large-area rotogravure printing. A tailor-made ink was studied, and the residual activity of the enzyme was 85% after additives incorporation, and 15.5% after gravure printing. Au IDEs were coated with gravure films of the Tyr-containing ink, and the biosensor was encapsulated with a cellulose acetate dip-coating film to avoid dissolution. The biosensor impedance magnitude increases linearly with the concentration of a model antioxidant, allowing for the construction of a calibration curve. Control experiments demonstrated the molecular recognition characteristic inferred by the enzyme. We found that the biosensor sensitivity and the limit of detection were, respectively, 5.68 Ω/µm and 200 µM. In conclusion, a disposable, light-weight, all-printed and flexible biosensor for antioxidants was successfully fabricated using fast and large-area printing techniques. This opens the door for the fabrication of technological products using roll-to-roll processes.
منابع مشابه
Fabrication of Resistive E. coli Biosensor Based on ZnO Nanorods and Nanoparticles
In this paper, a biosensor has been fabricated using ZnO nanorods and nanoparticles to detect different concentrations of the E. coli bacteria. The innovation of this paper lies in design and fabrication of the resistive type E Coli bacteria sensor. To make this biosensors, printed circuit board based electrodes are designed and made in an interdigitated shape. Both hydrothermal and drop cast m...
متن کاملFully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant.
Printed p-type single walled carbon nanotube (SWCNT) based circuits exhibit high power dissipation owing to their thick printed dielectric layers (>2 μm) and long channels (>100 μm). In order to reduce the static power dissipation of printed SWCNT-base circuits while maintaining the same printing conditions and channel lengths, complementary metal-oxide-semiconductor (CMOS) based circuits are m...
متن کاملAmorphous InGaZnO Thin Film Transistor Fabricated with Printed Silver Salt Ink Source/Drain Electrodes
Recently, amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) with inkjet printing silver source/drain electrodes have attracted great attention, especially for large area and flexible electronics applications. The silver ink could be divided into two types: one is based on silver nanoparticles, and the other is silver salt ink. Organic materials are essential in the formula...
متن کاملThe Inkjet Printing of Reducible AgNPs amperometric glucose biosensor Electrodes
The enzymes immobilization of the is crucially effective factor in biosensor preparation. Metal nanoparticles potentially able to immobilize the enzymes according to unique properties including large surface-to-volume ratio, high surface reaction activity, high catalytic efficiency, and strong adsorption ability. A novel and highly sensitive amperometric glucose biosensor was obtained by using ...
متن کاملMajor Trends in Gravure Printed Electronics
Printing has become a mature industry, forcing printers to create new applications for their manufacturing process. One such application is printed electronics. The gravure printing process allows for incredible speed and exceptional quality for traditional graphic printing. Theoretically, this would be an ideal method for the commercial production of printed electronics. This study analyzes gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biosensors & bioelectronics
دوره 67 شماره
صفحات -
تاریخ انتشار 2015